
J .  Fluid Mech. (1971), wol. 49, purt 4, p p .  745-761 

Printed in Great Britain 
745 

On geostrophic motion of a non-homogeneous fluid 
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A genera theoretical relationship between the (three-dimensional) vcLacity field 
and density field is established for geostrophic flow of a non-homogeneous fluid. 
The practical value of the relationship - which reduces to the celebrated two- 
dimensional theorem due to Proudman and Taylor when the fluid is homogeneous 
- is illustrated by means of three examples of flows in rapidly rotating fluids, 
namely (i) baroclinic waves in laboratory systems and in the atmosphere, (ii) the 
gyroscopic ‘steering’ processes in Jupiter’s atmosphere that are implied by the 
‘Taylor column’ theory of the Great Red Spot, and (iii) certain striking pro- 
perties of ocean currents revealed by recent observations in the Atlantic and 
Mediterranean. 

1. Introduction 
The celebrated two-dimensional theorem due to Proudman (1916) and Taylor 

(1923) - that slow steady hydrodynamical motions of an inviscid homogeneous 
fluid that otherwise rotates like a rigid body are the same in all planes perpendi- 
cular to the rotation axis -has proved useful in a wide variety of studies. The 
purpose of the present paper is to establish the corresponding result for a non- 
homogeneous fluid. This is a problem of obvious interest in the theory of rotating 
fluids and one of practical importance in geophysical fluid dynamics. 

2. Basic equations 
When referred to a system of co-ordinates that rotates with uniform angular 

velocity f2 relative to an inertial frame, the equations of motion and continuity 
governing the flow of a fluid of density p and viscosity p may be conveniently 
written as follows: 

~ ~ ~ x P u + V P - P ~  = - A - R - E  (1) 

and 
respectively, where 

v . (pu) = - c, 

A = paujat, R = p(u .V) u, E = V x (pV x u) and C = +/at .  (3) 

Here u is the Eulerian flow velocity relative to the rotating system, p denotes 
pressure and t time, and g is the acceleration due to gravity and centrifugal 
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effects. The terms A, Rand E on the right-hand side of (1) can be neglected when 
!2 is so large that the dimensionless parameters 

58 = py@G, at (4a) 

‘3 = p(u . V) u/2pQ x u (Rossby number) (4b) 

and (3 = V x (pV x u)/2pQ x u (Ekman number) (4c) 

(where the overbar means ‘root-mean-square value of ’) tend to zero. The Coriolis 
force, 2 p 8  x u, then balances the non-hydrostatic component of the pressure 
gradient, - V p  + pg, exactly and the flow is said to be geostrophic. 

The equations of geostrophic flow are mathematically degenerate; they do not 
suffice, when combined with thermodynamic considerations (see equation (8)) 
and appropriate boundary conditions or initial conditions on U, p andp, to deter- 
mine the field of flow. Nevertheless, they express with good accuracy important 
properties that slow hydrodynamical motions in rapidly rotating systems (e.g. 
a wide range of laboratory experiments, the Earth’s oceans and atmosphere, the 
atmospheres of Jupiter and certain other planets, certain stars) must possess 
nearly everywhere and can, when judiciously applied, lead to the discovery of 
the location and nature of highly ageostrophic phenomena (e.g. viscous or inertial 
boundary layers, detached shear layers (‘fronts ’) or inertial oscillations) that are 
necessary concomitants of highly geostrophic flow. 

Taking the curl of (l), making use of (2) and the fact that g is irrotational, 
we obtiain the vorticity equation in the form 

(5 )  

where alas denotes differentiation with respect to distance s measured parallel 
to Q. When 9I + 0, ‘3 --f 0 and C5 --t 0 (the geostrophic limit, see equation (4)) and 
time variations in p are so slow that 

2!2 - -g~Vp= a(PU) -2QC+Vx(A+R+E),  
as 

(see equation (2)) also tends to zero [where (u, w, 20) are the (z, y, z )  components of 
u, the z axis being taken parallel to 91 equation (5) reduces to 

(7)  

which expresses an exact balance between the gyroscopic torque, 2!2 a(pu)/as, 
and the gravitational torque, g x Vp,  acting on unit volume of an individual fluid 
element. 

The density of an individual fluid element depends in general on the ambient 
pressure p ,  entropy X and chemical composition Y ,  so that the rate of change of 
density of the element, Dp/Dt (where D/Dt = a/at+ (u .V)), satisfies 

2~ a(pU)/as = g x vp, 
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(9) 

Combining the last two equations shows that 

where 

and 

c being the speed of sound and py* the familiar adiabatic density gradient. The 
value of the quantity Q ,  which is of the order SZ times the largest terms on the 
left-hand side of equation (10) (the advective terms) if 

an inverse P6clet number, depends on irreversible thermodynamic processes 
(internal heating, thermal conduction, radiation) and processes that change the 
chemical composition of an individual fluid element. Q can be set equal to zero 
in the isentropic limit i9 -+ 0, when these irreversible processes are negligible. 
When, in addition, the fluid motions and the concomitant time variations in 
density and pressure are so slow that the dimensionless parameter 

_ _ _  
ap 1 ap u 
at c2 at c2 
- +-- +- . ( A  + R +  E) 

6=- - 

tends to zero, equation (10) reduces to 

u-+v-+w --py* = 0, 
ap ax ap ay (2 1 

which expresses an exact balance between horizontal density advection and 
vertical density advection minus the term wpy*. 

In  what follows next we shall examine the general properties of flows that 
satisfy equations (7) and (14), which, as we have shown, hold in the limit when 
(a) B is so large that 8 -+ 0, 3 + 0 and Q + 0 (geostrophic limit), (b )  Q is so small 
that SZ --f 0 (isentropic limit) and (c) the relative fluid motions and their time 
variations are so slow that 6 --f 0 and 6 -+ 0 (see equations (4), (6), (12) and (13)). 
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3. Steering 
Now introduce the quantities U and $ where 

U 3 (u, v), $ = tan-l (v /u) ,  (15) 

respectively the horizontal flow velocity vector and the angle between U and the 
horizontal but otherwise arbitrary x axis, and I?, 8 and y where 

respectively the horizontal density gradient divided by p, the angle between I’ 
and the x axis, and the vertical density gradient divided by p. When expressed 
in terms of these quantities ( 7 )  and (14) are as follows: 

and u r c o s ( ~ - o ) + w ( y - y * )  = 0. (18) 

Eliminating cos ($ - 0) between (18) and the second component of (17) we 
find for the rate of change with respect to s of the direction of the horizontal flow, 

If we introduce as a convenient measure of the coherence of the flow patterns at  
different values of s the ‘dimensionless steering parameter ’ or ‘dimensionless 
axial coherence parameter ’ 

(T = iIxa$/as, (20a) 

where S is a typical linear dimension of the fluid container in the direction of Q, 
then by equation (19) 

for flows that satisfy (7) and (14). When (T is very large the horizontal flowpattern 
changes very slowly with s, notwithstanding the possibility of large gradients of 
the horizontal flow speed in the s direction. 

When the fluid is homogeneous (i.e. V p  = 0) ,  thermodynamic considerations 
are not required, so that Q, 6, and 9 are redundant parameters. Equation (17) 
then reduces to the celebrated Proudman-Taylor theorem au/as = 0 (Proudman 
1916, Taylor 1923, see also Greenspan 1968), with components 

(T = 2QU2/gwS(y- y*)  (20b) 

aulas = 0, a ~ p s  = 0, awlas = 0. (21) 

According to this theorem, geostrophic motion of a homogeneous fluid is such 
that fluid filaments parallel to 8 move in directions perpendicular to Q without 
bending or stretching (and is therefore impossible unless the shape of the fluid 
container is fairly simple). Thus, the motion at all values of s is ‘steered’ by the 
topography of the container, an effect first demonstrated by Taylor (1923). By 
equation ( 5 ) ,  when slight ageostrophic effects are taken into account the dimen- 
sionless steering parameter (T (see equation (20a)) is of order (a + ‘ill + @)-l for a 
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homogeneous fluid (cf. Lighthill 1970), and is therefore infinite in the geostrophic 
limit. The Proudman-Taylor theorem and ‘Taylor columns ’t produced by 
moving objects or topography are central concepts in the study of rotating 
homogeneous fluids. 

Strong steering (i.e. CT % 1) also occurs even when Ap is so large that 

aln (pU)/as Qi X-l, 

provided that horizontal advection of density is so weak that 

r u p  COS (lc. - e) < 2 ~ p u 2 / g s  (22 a) 

(see equation (17)). This criterion is satisfied in the case we are considering 
(namely 0 --f 0,  0. -+ 0, 9 --f 0 )  when the vertical advection of potential density 
satisfies 

but not otherwise. 
wp(y - y* )  < 2QpUZ/gX, (22 b)  

4. Concluding remarks 
Equation (1) is linear in u when E or A is the largest term on the right-hand 

side, but noti when R dominates. Likewise equation (10) can be linearized when 
diffusion of density, as included implicitly in the term &, is more important than 
non-linear density advection terms on the left-hand side, but not otherwise. It is 
hardly surprising therefore that rigorous mathematical studies of rotating fluids 
are almost exclusively concerned with hypothetical systems for which @ or (see 
equation (4)) is the leading measure of departures from geostrophy and D is so 
large that horizontal density advection can be treated as a small perturbation or 
neglected altogether. Within their limitations these detailed analyses provide 
useful insight into certain processes (Greenspan 1968, Veronis 1970) (and have 
only occasionally led to erroneous results as a consequence of misapplication). 

In  rapidly rotating large-scale natural systems and in many laboratory experi- 
ments, % (rather than (3 or 3)  is typically the leading measure of ageostrophic 
effects, irreversible thermodynamic processes act so slowly that 0 < 1 (see 
equation (12)) and the parameters 0. and 3 (see equation (6)) are also much less 
than unity. By ( 5 ) ,  W is then typically 5 i%ltS/L (where L is a typical horizontal 
dimension) and therefore much less than 0. Nevertheless, in systems that derive 

t The use of terms with no precise complete definition out of context is not without 
precedent in fluid mechanics; ‘eddy’, ‘vortex’, ‘blocking’, ‘wake’ and ‘wave’ are a few 
examples. The expression ‘Taylor column’ was first coined (so far as I am aware) by Hide 
(1961) as a convenient term in the discussion of the flow phenomenon in Jupiter’s atmos- 
phere that, on the proposal that astronomers subsequently termed the ‘Taylor column 
theory’, underlies the Great Red Spot. The various phenomena to which the toim ‘Taylor 
column’ has been applied by fluid dynamicists have in common two general characteristic 
features only: (a) they occur in fluids through which, owing to rapid rotation, strong stable 
density stratification, or magnetohydrodynamic effects, mechanical energy can be trans- 
mitted by transverse wave motions; ( b )  the corresponding value of B (see equation (20a))  
is much greater than unity. ‘Taylor columns’ exhibit wide variations in their other 
properties; they are not necessarily stagnant, they can occur in baroclinic as well as in 
barotropic fluids, and they can be produced by forced disturbances of the density or 
pressure fields as well 8s the velocity field. 
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their kinetic energy from potential energy due to gravity acting on the non- 
homogeneous density field (thermal convection) I @ \  is essentially non-zero. By 
(19) and (20) the dimensionless steering parameter satisfies 

u 2 @-I, (23) 

where (24) 

(cf. Prandtl 1952, Lineykin 1955, Stommel & Veronis 1957, Robinson 1960, 
Phillips 1963, Ingersoll 1969, Walin 1969). 

Baroclinic waves 

Experiments on thermal convection in a rotating fluid subject to a horizontal 
temperature gradient (see Hide 1969b) have shown that when !2 is sufficiently 
large for baroclinic waves (of the same type as the basic energy-producing 
motions in the Earth’s atmosphere (see Phillips 1963)) to occur, the waves 
evidently ‘choose’ the largest possible scale in the s direction, namely S,  and 
adjust their structure until the vertical stability, as measured by y - y*, and the 
horizontal scale of the velocity and density fields, L, are such that @ N 1. In  such 
a system steering, as measured by B (see equation (20))’ is comparatively weak, 
for then by (23) B N 1.  This result is in keeping both with theoretical 
(Charney 1947, Eady 1949) and observational studies of growing baroclinic 
waves, which are characterized by vertical variations in horizontal phase of 
about 0.25 wavelength. 

Jupiter’s atmosphere 

Motions in the atmosphere of the planet Jupiter are characterized by very low 
values of a, 8 and C? and it is plausible to suppose that 0 << 1 , &  << 1 and Fs, < 1 
(see Hide 1 9 6 9 ~ ) .  For those levels within the atmosphere where magneto-hydro- 
dynamic effects are unimportant, B will be given by (23). The so-called ‘Taylor 
column’ theory of Jupiter’s Great Red Spot (Hide 1961) requires that B $- 1 
which by (24) implies that 23 < 1. If we take g N 3 x lo3 cm s -~ ,  y* N 10-7 cm-1 
(see Tejfel’ 1969), 8 N 108cm and L N 10IOcm then by (24) ‘$3 N (y-y*) /y* .  
The sign of y- y*, let alone its value, is not known for Jupiter’s atmosphere, but 
values of [(y - y*)/y*]-l and therefore of c7 that are not much greater than unity 
would be very hard to reconcile with certain observational evidence - notably 
that the planet emits a great deal more thermal radiation than it receives from 
the sun (see Trafton & Wildey 1970), implying that the atmosphere is probably 
subject to strong heating from below. Hide (1962) has already shown that the 
Taylor column theory of the Great Red Spot does not imply very special values 
for the vertical density gradient in Jupiter’s atmosphere and the present analysis 
effectively generalizes this result to  include effects due to horizontal density 
gradients. 

Ocean currents 

These are also characterized by low values of ‘3, 3, C?, 0, & and B. Vertical 
profiles of mean horizontal currents have been determined at  a few stations in 
the Mediterranean (Swallow 1969, also private communication), from the motioii 
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of neutrally-buoyant floats a t  depths ranging from lOOm to 1500m, and a t  one 
station in the Western Atlantic (Webster 1968), from moored current meters at  
depths ranging from lOOm to 2000m. Because the horizontal scale of these 
currents greatly exceeds the depth of the ocean, vertical profiles should not differ 
significantly from profiles in the s direction. The most striking feature of these 
profiles is the smallness in both cases of vertical variations in the direction of U. 
Typically these variations are no more than 11" for the Atlantic observations - 
notwithstanding a concomitant decrease of the magnitude of the current by a 
factor of 4 -the flow at all levels being nearly parallel to the large-scale features 
of the bottom topography. The corresponding ranges of directions and speeds 
revealed by the Mediterranean results are 15" and a factor of about 2 respectively. 
In both cases the dimensionless steering parameter c i s  much greater than unity. 

I am grateful to Dr M. E. McIntyre for helpful comments on an early draft of 
this paper and to the Director-General of the Meteorological Office for permission 
to publish it. 
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